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Abstract

Dense video captioning is a challenging computer vision task that involves effec-
tively understanding long video sequences. In this work, we address this problem by
augmenting recurrent neural network architectures with external memory. We propose a
dense captioning model that incorporates external memory augmentation both to encode
video and densely caption it. We demonstrate that recurrent video encoder and dense
captioner networks augmented with external memory can be used to effectively encode
frames based on the content of the entire video, as well as for generating dense cap-
tions better than recurrent networks without external memory augmentation. We conduct
experiments on the ActivityNet Captions and YouCook II datasets to demonstrate the
potential of external memory augmentation.

1 Introduction

Describing the content of a video in natural language is a fundamental artificial intelligence
problem with many applications, such as video search, video summarization, and acessibility
for the visually impaired. In the task of dense video captioning, we are given video input
that consists of multiple events, often chronologically related to each other, and the goal is
to detect these events and describe each of them using a natural language sentence.

Numerous methods involving recurrent neural networks (RNNs) have been proposed to
address this task [7, 10, 12]. RNNs can be used either for video encoding or captioning the
events in these videos, or for both of these purposes. While RNNs are shown to be effective
at sequence understanding, understanding long sequences is still a difficult problem.

We present a novel architecture for dense video captioning based on memory augmented
neural networks. A large and sparsely written external memory can offer a potential benefit
to recurrent nets in understanding long sequences [1, 3, 8]. Dense video captioning involves
two main problems: dense event detection and dense captioning. In this work, we focus
on dense captioning. Memory augmented recurrent neural networks have ideal properties
for understanding long videos and densely captioning them. In particular, they enable the
storage and access of memory cells that can capture the content of events as they evolve over
varying timescales. Furthermore, cells in the external memory are written sparsely, which
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lets them store data reliably for long timescales, unlike the neurons in RNN models where
whole neurons are updated at every iteration. This property provides memory augmented
networks a mechanism to store information about the long sequence of events which would
enable a contextual understanding.
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Figure 1: An overview of our memory augmented recurrent neural network based model for
dense video captioning. We use a memory augmented recurrent representation to encode the
whole video and also to caption each event segment.

As shown in Fig. 1, we use memory augmented recurrent neural networks for our model
components. First, a memory augmented video encoder is used to produce a feature repre-
sentation of event segments in a holistic manner based on context from other events occur-
ring in the video. Second, each of the event segments is captioned coherently by a memory
augmented network using these holistically learnt event segment representations. We demon-
strate the effectiveness of this over baseline methods that do not have memory augmentation.

2 Related Work

Dense Video Captioning. Krishna et al. [6] proposed the ActivityNet Captions dataset that
aims to benchmark event detection algorithms which can also provide a natural language
description about these detected events. Zhou et al. [16] introduce a new procedural video
dataset called YouCookII which contains YouTube cooking videos annotated densely with
event segments and a natural language description about each of these events. Wang et al. [7]
use a bi-directional recurrent representation to encode video frames for event detection and
also to extract event context vectors for dense captioning. Xu et al. [12] learn to perform joint
detection of events and describe them using 3D convolutional representation to detect events
and a hierarchical LSTM representation to densely caption the video about these events.
Zhou et al. [17] address dense captioning by using transformer based end-to-end event seg-
ment detection and captioning model with multiple layers of multi-headed self attention. Li
et al. [7] propose to jointly learn to detect and caption the events by using “descriptiveness”
regression to refine the segment boundaries and caption using an attribute augmented cap-
tioning architecture. Wang et al. [10] propose an adaptive bidirectional context fusion based
on a gating mechanism for both the event proposal and event caption generation. Zhang et
al. [15] utilize cross-modal hierarchical sequential embedding that learns multi-granular cor-
respondances between image/video and text for performing different tasks including dense
video captioning. Unlike many of the previous approaches for this task that rely on recurrent
neural network representations to function both as a memory bank and video-caption repre-
sentation learners, in our model, we provide dedicated stable external memories both for our
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video generator and captioner.

Image and Video Captioning is a computer vision task that has an extensive body of
literature behind it. Some of the earlier examples of image and video captioning methods
include Donahue et al. [2] that uses an encoder decoder technique to caption images and
videos. You et al. [13] invoke semantic attribute attention maps on both the input and output
caption representations to learn a captioning model. Karpathy et al. [5] propose to describe
images by inferring a latent image to caption alignment by performing multimodal embed-
ding and using a structured objective. Yu et al. [14] learn a hierarchical representation for
paragraph captioning of video by incorporating temporal and spatial attention mechanisms.

Memory models are frequently used to learn sequence representations for performing
various tasks like question answering in text [3], movie question answering [8] and image
captioning [1]. Graves et al. [3] introduce a novel external memory augmented recurrent
neural network to perform multiple tasks that include question answering in synthetic dataset
settings, and three graph processing based tasks. Na et al. [8] use a write CNN to encode
multimodal data content and a read CNN to read this content as well as the question to
learn the answer representation. Park et al. [1] learn a personalized image captioning rep-
resentation by involving a memory which is used as a storage bank to capture contextual
data representations that are pertinent to hashtag prediction and post generation which are
primary tasks with in this work. Wang et al. [11] propose a multimodal memory for video
captioning. Differing from these methods, we focus on the task of dense video captioning
which involves generating a caption for each of the events in videos.

3 Method

The proposed model consists of a recurrent external memory aided video encoder and caption
generator. We first provide a brief description about external memory augmented neural
networks and follow it up with a description about our dense captioning model aided by this
network.

3.1 Preliminaries

Inspired by Graves et al. [3], our memory encoder consists of an external memory that en-
hances the storage capacity of recurrent neural networks and a memory controller that ac-
cesses this memory to store and retrieve history. We provide an overview of each of these
components and their functionalities.

3.1.1 Memory Controller

The memory controller consists of a recurrent neural network that uses the external mem-
ory to store information. Iteratively, it reads and writes to the external memory, and in this
process, it encodes the temporal dynamics of the input. The controller encoded input rep-
resentation comprises of the controller recurrent neural network output, and in addition, a
set of “read vectors" being read from the external memory. Mathematically, the controller
operation can be described as:

o, =C(fi;M[_y); M ey
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Here, C denotes a controller recurrent network, f;, M; are the feature input and external
memory read vectors at time ¢. “;" is the concatenation operator. The read vectors are
obtained from the controller’s read to the external memory. The controller performs iter-
ative read/write operations on the external memory, described later in this section and in
the supplementary material. The controller network emits this output o,. The final encoded
representation is obtained by computing a residual connection over o, at time ¢.

0y :01+g(ft) ()

Here, function g maps input f; to the output space. é; is the final output of the network.

3.1.2 External Memory

The external memory consists of a block of memory cells used by the controller to store
memory. At each timestep, the controller reads a set of data from the memory and writes
another set of data to the memory. The memory read/write locations are governed by a
probabilistic addressing mechanism, including content based addressing. In addition to the
content based addressing, additional addressing components specific to read/write opera-
tions are also utilized to serve customized functionalities accordingly. Next, we provide a
summary of these addressing mechanisms. For more mathematical details of its operation,
please refer to the supplementary.

At each timestep #, content based addressing chooses the most appropriate location to
perform the operation by computing a probability map over locations. It uses a key vector k
and computes cosine similarity between this key vector and content at memory locations:

¢, = softmax(cos(M;—1,k;)5;) 3)

Here, ¢; denotes content weight for memory locations in M;, and §; denotes “strength" value
constrained to a range between [1,o0), all at time ¢. At each timestep, content based address-
ing uses a read and write key/strength pair to perform read/write operation. We now briefly
describe the read/write operation. For a more detailed mathematical description about the
read write operations, please refer to the supplementary.

Write Operation: The write operation involves computing the content (known as “write
vector") and the location to write to the memory (known as “write weightings"), determined
by a set of differentiable components. Intuitively, the write location is determined by pa-
rameters that choose between re-writing a location that has been written by content based
addressing (Eqn. 3) and writing to a new location by a technique called dynamic memory
addressing. In addition to this component, the write operation also enables an operation of
preventing any write operation using a learnable “write" gate and to trigger a memory reset
using an “erase" vector. The mathematical formulation of the write process involving these
components can be found in the supplementary material.

Read Operation: Similar to the write operation, the read operation involves comput-
ing the location to read, known as “read weightings". A read operation is determined by
multiple factors. Following Equation 3, the content based addressing weight component cor-
responding to read weights is computed for memory locations. In addition to the content
based addressing component, a read operation also consists of a component that tracks the
temporal order in which the contents are recorded in the memory. To do so, first, a prece-
dence vector is computed which measures frequency of write operations at a given location.
Second, using this precedence vector, a temporal linkage matrix is computed, which is used
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in encoding the write location order (known as temporal links) in the form of forward and
backward link weights. Final read weightings are computed as a weighted combination
of these three components. Mathematical formulation of the read process involving these
components can be found in the supplementary material.

|1\/lemory Augmented Recurrent Video Encoded [Memory Augmented Recurrent Caption De(odel1 7“\‘
Linear(g.) )

[Memory Augmented Reuulent Caption Denodell—— a

[Memory Augmented Recurrent Caption Decoder]—

Figure 2: Illustration of our dense captioning model with references to variables in our equa-
tions. Encoder components are shown in green and decoder components are shown in blue.

3.2 Memory Augmented Recurrent Video Encoder

In this work, we are given an input video that contains multiple segments of interest that
need to be captioned, for which we employ a memory augmented representation to encode
the video in a holistic manner and to caption all the events that occur in the video. A detailed
illustration of our model is shown in Fig. 2. We now describe each of these components.
We use a memory augmented recurrent neural network to encode the multi-event video
in a holistic manner. The recurrent neural network in our video controller, C, of our video en-
coder is a single layer bidirectional LSTM (Bi-LSTM). Each frame in the input v, is encoded
using this representation as:
o) = (Co(vi; M ); M) 4)

t—1

where M;"" are a set of read vectors from the timestep #, and o} is the output of video con-
troller network. We further compute a transformation over residual connection [4] on con-
troller to get the final encoded video representation:

o7 = of +gv(v) 5)

Here, g, is a function that maps video input to the video encoder network’s output space. We
refer to the entire encoded video representation as O¥, which has features corresponding to
T video frames stacked together:

0¥ = (8Y,03,...,01) (6)

3.3 Memory Augmented Recurrent Dense Caption Generator

We use the encoded video representation O” to caption the events that occur in the video. The
input to this module is the encoded video representation O,, and a set of P event segments.
An event segment p is defined as a tuple (s, e,) of its start and end locations. Using these
inputs, we first extract event segment features as:

xp= (0.0 ,1,....00) @)
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We caption these segments x,, using our dense captioning model.

We enable the event captioner to focus on different parts of the event segment appropri-
ately while generating the caption word-by-word, using temporal attention. At each word
generation step, event segment features are temporally attended to compute the video feature
input to the caption decoder at time ¢, denoted by £, :

Xpi = Opy-Xp (8)

Here, o), is the temporal attention weight vector for the p'" event segment at time 7, and

“." denotes inner product. We use this attended event segment representation to the caption
network, which we use to compute the attention weights o, described later.

We use a representation consisting of a memory augmented recurrent neural network
for the caption controller network. It consists of a single layer Bi-LSTM, which is used to
decode the caption word by word. We use this network in decoding the next word of the
caption as follows:

ips = [yps—138p,] )
0y = [(CelipsiMy; )M 7] (10)
5;” = 6(0;t+g0(lp-,l)) (11)
Ypt = softmax(d,,) (12)

In the above equations, p and ¢ correspond to event segment and time indices respectively,
ip; is the input to the caption controller network. C, is the Bi-LSTM neural network part of
the caption controller, and M;‘;,r are a set of read vectors at time 7. The function g, maps input
ip, to the caption controller network’s output space and is used to compute the output word
representation. Finally, theta is a non-linear transformation that projects caption controller
output to the output space, denoted by o9, ,. We use this output to compute the probability
distribution over the vocabulary for the next word y,; by a softmax operation. Note from
Equation 11 that similar to the video encoder, the captioning network too computes a residual
connection across the caption controller. Using caption controller network outputs from the
last timestep, the video attention weight 0, used in Equation 8 is recursively computed
using the controller hidden state as:

Ops :softmax(d)([o;’,_l;yp’t_l])) (13)

Here, 0}, is the caption controller network output defined in Equation 10, and yp,—; is the
previous caption word generated using Equation 12. ¢ is a linear transformation map that is
used to compute the final video attention weight ¢, ;.

The output of dense caption generator is then a set of captions corresponding to each event
segment:

((y%vyév 7)’1{1)7()’%7)’%7 . 7.)%{2))7 . 7()7117,)7]277 7)725)7 c (yf;ygv 7)72’)) (14)

Here, index p corresponds to event segment index, and L!, L2, ... L represent the length
of P captions, corresponding to each event segment respectively.

In summary, we propose a novel dense video captioning model consisting of a memory
augmented video encoder and memory augmented dense caption generator. We generate
captions, one corresponding to each event in the video, independently of each other, by

performing temporal attention over encoded event segment features.
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4 Training

To learn our model, we are provided with a training set with ground truth event segments and
a caption associated with each event segment. Mathematically, each instance in the training
set is represented by:

th={(s'¢,g),i=1,2,...,B} (15)

Here, a training datapoint #,, indexed by 7, has an annotated set of P, event segments,
and each event segment annotation consists of start time s’, end time ¢’ and a caption g'.

We train the model end to end, and use cross entropy loss over words across all the P,
captions as our loss function for this training example:

P L

Loss = ZZCE(yﬁ,gﬁ) (16)

i=11=1
Here, g! denotes the t"" ground truth word of the i caption, and L! denotes the length of the
i"* caption. For a video, we compute this loss as a summation over all captions. We perform
teacher forcing over the entire duration of training, where we input the ground truth caption
word at each time ¢ instead of the word predicted by the model. During test time, we input
the previously predicted word instead of the ground truth.

S Experiments

5.1 Datasets

We conduct experiments on two datasets: the YouCooklI [16] and the ActivityNet Cap-
tions [6] datasets. The YouCook II dataset has 2000 videos, with 1333 videos for training
and 457 videos for validation. The videos in this dataset have an average event count of
7.70. The ActivityNet Captions dataset has 10k training videos and 4917 validation videos.
The videos have an average event count of 3.65 in this dataset. We use ResNet-34 features
provided in case of YouCooklI dataset, and C3D features in case of ActivityNet Captions
dataset. We perform experiments using validation set as test data.

5.2 Model Settings

We use two external memory augmented recurrent neural networks, one for video encoding,
one for captioning, with the same parameter dimensions for both the networks. We use an
external memory of 5 memory cells with size 1024. We have 4 read heads that result in 4
read vectors at each timestep, and 1 write head. For the controller, we use a Bi-LSTM for
the video, and an LSTM cell for the caption controller, each with size 1024. We vary the
learning rate between 0.1 and 0.01 with step size of 2 upon attaining training error plateau.
We train our system for a fixed training time of 50 epochs. We report maximum BLEU and
METEOR scores that we obtain for each of our baseline methods and the model.

We report results obtained using the ground truth event segments. We restrict ourselves
to ground truth event segments when comparing with previous methods as our models focus
on the dense captioning task and do not perform end-to-end training with an event detector
as in some previous work [10, 17].
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5.3 Baselines

LSTM Captioner/video encoder: We use Bi-LSTM for the video encoder and LSTM
for the captioner, both without the external memory. We refer to this baseline as LSTM-
vid/LSTM-cap in the results section. This is the baseline method for our model variants.
LSTM Captioner, Memory augmented LSTM video encoder: We use Bi-LSTM with the
external memory for the video encoder and LSTM with no external memory for the cap-
tioner. We refer to this model variant as Mem-Vid/LSTM-cap.

Memory augmented Captioner, Memory augmented LSTM video encoder: We use Bi-
LSTM with the external memory for both video encoder and captioner. We refer to this
model variant as Mem-Vid/Mem-cap.

5.4 Results

Tab. 1 lists the performance of several methods including our model on the YouCook II
dataset using ground truth events. We obtain state of the art performance on the BLEU 4
metric and also achieve better performance compared to the baseline methods. Tab. 2 com-
pares our method with previous dense video captioning methods applied to this problem and
other dense video captioning/video captioning methods. We show that our model achieves
competitive performance compared to these previous methods.

Method BLEU 4 | METEOR
LSTM-vid/LSTM-cap 0.93 9.15
Ours-Mem-Vid/LSTM-cap 1.49 9.74
Ours-Mem-Vid/Mem-cap 1.64 10.08
Zhou et al. [17]" 1.42 11.2

Table 1: Experimental results on YouCooklI dataset obtained using ground truth event seg-
ments.

Method BLEU 1 | BLEU2 | BLEU3 | BLEU4 | METEOR

LSTM-YT [9] 18.40 8.76 3.99 1.53 8.66
HRNN [14] 18.41 8.80 4.08 1.59 8.81
Krishna et al. [6] 18.13 8.43 4.09 1.60 8.88
Lietal. [7] 19.57 9.90 4.55 1.62 10.33

Zhang et al. [15] 19.8 9.4 4.3 2.1 9.2
LSTM-vid/LSTM-cap 18.91 7.75 3.09 1.55 8.95
Ours-Mem-Vid/LSTM-cap | 21.75 10.06 4.30 1.92 9.76
Ours-Mem-Vid/Mem-cap 21.67 9.87 4.15 1.90 9.84
Zhou etal. [17]"* - - 5.80 2.77 11.2

Table 2: Experimental results on ActivityNet Captions dataset for all our methods using
ground truth event segments (Numbers for the first four rows obtained from Li et al. [7]).

Relative to previous methods, our model achieves much more competitive performance
in the case of the YouCooklII dataset. The plausible reason for this observation lies in the
nature of these two datsets. While YouCooklI has events that are sequentially highly corre-
lated events, ActivityNet videos have more independent events. The former scenario is more
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Groundtruth: Cut the
chicken

LSTM-vid / LSTM-cap: Cut
the roll into pieces
Mem-vid / LSTM-cap: Cut
the chicken into cubes
Mem-vid / Mem-cap: Cut
the chicken into pieces

Groundtruth: A man walks out
in front of a weighted barbell.
LSTM-vid / LSTM-cap: A man is
seen standing on a track and
begins swinging down a track.
Mem-vid / LSTM-cap: A man is
seen standing on a large circle
and begins spinning a set of
weights.

Mem-vid / Mem-cap: a man is
seen standing on a large mat
with a racket.

Groundtruth: Mix flour salt
and pepper together
LSTM-vid / LSTM-cap: mix
the ingredients together
Mem-vid / LSTM-cap: add
salt and black pepper
Mem-vid / Mem-cap: add
flour salt and pepper to the
bowl and mix

Groundtruth: coat the chicken
in the flour mixture the egg
mixture and the bread crumbs
LSTM-vid / LSTM-cap: coat the
chicken in the flour mixture
Mem-vid / LSTM-cap: coat the
meat in flour and bread
crumbs

Mem-vid / Mem-cap: coat the

chicken in the flour

Groundtruth: The man prepares
to lift the weight

LSTM-vid / LSTM-cap: A

man is seen standing on a set of
weights and begins performing
a gymnastics routine.

Mem-vid / LSTM-cap: The man
lifts the weight and then walks
away.

Mem-vid / Mem-cap: the man
then bends down and lifts a
heavy weight over his head

Groundtruth: The man lifts
the weight above his head.
LSTM-vid / LSTM-cap: A
man is seen standing on a
stage with a large weight

and begins walking around.

Mem-vid / LSTM-cap: The
man lifts the weight to his
chest and drops it to the
ground.

Mem-vid / Mem-cap: The
man lifts the weight over
his head.

Groundtruth: cut the chicken
add marinara sauce and
cheese on top of the chicken
LSTM-vid / LSTM-cap: add the
sauce to the pan and mix the
ingredients

Mem-vid / LSTM-cap: serve
the chicken with cheese and
place the top on top
Mem-vid / Mem-cap:
combine the meatballs sauce
and cheese on the chicken

-
Groundtruth: The man
drops the weight.
LSTM-vid / LSTM-cap: A
man is seen standing on a
mat with a large weight.
Mem-vid / LSTM-cap: The
man drops the weight.
Mem-vid / Mem-cap: The
man drops the weight.

Figure 3: Sample qualitative results comparing ground truth captions with baseline and
model variants. Note that the full model is able to generate the relevant content, shown
in green (for exact attributes) and blue (for related attributes), while making fewer mistakes,
shown in red.

favourable to our model, as it aims to capture these long term correlations. Nevertheless, our
models achieve competitive performance on both the datasets.

Fig. 3 shows qualitative results and compares the results of different baselines. It can be
seen that the memory augmented models refer to the relevant attributes of the event more
often than the LSTM only baseline. This shows that memory augmentation improves the
performance of recurrent models for dense captioning, and therefore could be extended to
previous dense captioning methods involving recurrent neural network representations [7,
10].

6 Conclusion

In this work, we proposed a new model for dense video captioning involving an external
memory augmented video encoder and an external memory augmented dense captioner. We
showed that our model considerably improves the performance of recurrent neural network
based dense captioning method, and is competitive with respect to previous state of the art
dense captioning methods on two datasets.
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